Showing posts with label mini. Show all posts
Showing posts with label mini. Show all posts

Thursday, December 19, 2013

Mini Ups System

This circuit provides an uninterrupted  power supply (UPS) to operate 12V, 9V and 5V DC-powered instruments at up to 1A current. The backup battery takes up the load without spikes or delay when the mains power gets interrupted. It can also be used as a workbench power supply that provides 12V, 9V and 5V operating voltages. The circuit immediately disconnects the load when the battery voltage reduces to 10.5V to  prevent deep discharge of the battery.  LED1  indication  is  provided  to  show  the full charge voltage level of the battery. miniature white LEDs (LED2 and  LED3) are used as emergency lamps during power failure at night.

Mini Ups System Circuit diagram:

Mini Ups System Circuit Diagram

A standard step-down transformer provides 12V of AC, which is rectified by diodes D1 and D2. Capacitor C1 provides ripple-free DC to  charge the battery and to the remaining circuit. When the mains power is  on, diode D3 gets forward biased to charge the battery. Resistor R1 limits the charging current. Potentiometer VR1 (10k) with transistor T1 acts as the voltage comparator to indicate the voltage level. VR1 is so adjusted that LED1 is in the ‘off’ mode. When the battery is fully charged, LED1 glows indicating a full voltage level of 12V.

When the mains power fails, diode D3 gets reverse biased and D4 gets forward biased so that the battery can automatically take up the load without any delay. When the battery voltage or  input voltage  alls below 10.5V, a cut-off circuit is used  to prevent deep discharging of the battery. Resistor R3, zener diode  ZD1 (10.5V) and transistor  T2  form  the  cut-off circuit. When the voltage level is above 10.5V, transistor T2 conducts and its base becomes negative (as set by R3, VR2 and ZD1). But when the voltage reduces below  10.5V, the zener diode stops conduction and the base voltage of transistor T2 becomes positive. It goes into the ‘cut-off’ mode and prevents the current in the output stage. Preset VR2 (22k) adjusts the voltage below 0.6V to make T2 work if the voltage is above 10.5V.

When power from the mains is available, all output voltages—12V, 9V and 5V—are ready to run the load. On the other hand, when the mains  power is down, output  volt-ages can run the load only when the  battery is fully charged (as indicated by LED1). For the partially charged battery, only 9V and 5V are available. Also, no output is available when the voltage goes below 10.5V. If battery voltage varies between 10.5V and  13V, output at terminal A may also vary between 10.5V and 12V, when the UPS system is in battery mode.

Outputs at points B and C provide 9V and 5V, respectively, through regulator ICs (IC1 and IC2), while output A provides 12V through the zener diode. The emergency lamp uses two ultra-bright white LEDs (LED2 and LED3) with current limiting resistors R5 and R6. The lamp can be manually switched ‘on’ and ‘off’ by S1. The circuit is assembled on a general purpose PCB. There is adequate space between the components to avoid overlapping. heat sinks for transistor T2 and regulator ICs (7809 and 7805) to dissipate heat are used.

The positive and negative rails should be strong enough to handle high current. Before connecting the circuit to the battery and transformer, connect it to a variable power supply. Provide 12V DC and adjust VR1 till LED1  glows. After setting the high voltage  level, reduce the voltage to 10.5V and adjust  VR2  till  the  output  trips  off.  After  the  settings  are complete, remove the variable power sup-ply and connect a fully-charged battery to the terminals and see that LED1 is  on. After making all the adjustment connect the circuit to the battery and transformer. The battery used in the circuit is a 12V, 4.5Ah UPS battery.

Source : http://www.ecircuitslab.com/2012/05/mini-ups-system.html


Continue Reading[..]

Thursday, March 28, 2013

Mini Amplifier 80 mW



This circuit is similar to the one above but uses positive feedback to get a little more amplitude to the speaker. I copied it from a small 5 transistor radio that uses a 25 ohm speaker. In the circuit above, the load resistor for the driver transistor is tied directly to the + supply. This has a disadvantage in that as the output moves positive, the drop across the 470 ohm resistor decreases which reduces the base current to the top NPN transistor. Thus the output cannot move all the way to the + supply because there wouldnt be any voltage across the 470 resistor and no base current to the NPN transistor.



This circuit corrects the problem somewhat and allows a larger voltage swing and probably more output power, but I dont know how much without doing a lot of testing. The output still wont move more than a couple volts using small transistors since the peak current wont be more than 100mA or so into a 25 ohm load. But its an improvement over the other circuit above.

In this circuit, the 1K load resistor is tied to the speaker so that as the output moves negative, the voltage on the 1K resistor is reduced, which aids in turning off the top NPN transistor. When the output moves positive, the charge on the 470uF capacitor aids in turning on the top NPN transistor.

The original circuit in the radio used a 300 ohm resistor where the 2 diodes are shown but I changed the resistor to 2 diodes so the amp would operate on lower voltages with less distortion. The transistors shown 2n3053 and 2n2905 are just parts I used for the other circuit above and could be smaller types. Most any small transistors can be used, but they should be capable of 100mA or more current. A 2N3904 or 2N3906 are probably a little small, but would work at low volume.

The 2 diodes generate a fairly constant bias voltage as the battery drains and reduces crossover distortion. But you should take care to insure the idle current is around 10 to 20 milliamps with no signal and the output transistors do not get hot under load.

The circuit should work with a regular 8 ohm speaker, but the output power may be somewhat less. To optimize the operation, select a resistor where the 100K is shown to set the output voltage at 1/2 the supply voltage (4.5 volts). This resistor might be anything from 50K to 700K depending on the gain of the transistor used where the 3904 is shown.

Continue Reading[..]