Showing posts with label temperature. Show all posts
Showing posts with label temperature. Show all posts

Wednesday, December 25, 2013

Two Wire Temperature Sensor

Remote temperature measurements have to be linked by some sort of cable to the relevant test instrument. Normally, this is a three-core cable: one core for the signal and the other two for the supply lines. If the link is required to be a two-core cable, one of the supply lines and the signal line have to be combined. This is possible with, for instance, temperature sensors LM334 and LM335. However, these devices provide an output that is directly proportional to absolute temperature and this is not always a practical proposition.

Circuit diagram :

Two-Wire Temperature Sensor-Circuit Diagram

Two-Wire Temperature Sensor Circuit Diagram 

If an output signal that is directly proportional to the celsius temperature scale is desired, the present circuit, which uses a Type LM45 sensor, offers a good solution. The LM45 sensor is powered by an alternating voltage, while its out-put is a direct voltage.

The supply to the sensor is provided by a sine-wave generator, based on A 1 and A 2 (see diagram). The alternating volt-age is applied to the signal line in the two-core cable via coupling capacitor C 6 .

The sensor contains a volt-age-doubling rectifier formed by D 1 -D 2 -C 1 -C 2 . This network converts the applied alternating voltage into a direct voltage. Resistor R 2 isolates the output from the load capacitance, while choke L 1 couples the output signal of the sensor to the signal line in the cable. Choke L 1 and capacitor C 2 protect the output against the alternating voltage present on the line.

At the other end of the link, network R 3 -L 2 -C 4 forms a low-pass section that prevents the alternating supply voltage from combining with the sensor out-put. Capacitor C 5 prevents a direct current through R 3 , since this would attenuate the temper-ature-dependent voltage.

The output load should have a high resistance, some 100 kΩ or even higher.  The circuit draws a current of a few mA.

Continue Reading[..]

Tuesday, December 24, 2013

Simple Battery Temperature Sensing Nicad Charger

Simple Battery-Temperature Sensing Nicad Charger. Two simple circuits permit Nicad charging of a battery based on temperature differences between the battery pack and the ambient temperature. This method has the advantage of allowing fast charging because the circuit senses the temperature rise that occurs after charging is complete and the battery under charge is producing heat, not accumulating charge. 

 Battery-Temperature Sensing Nicad Charger Circuit Diagram


Battery-Temperature Sensing Nicad Charger
Continue Reading[..]

Wednesday, April 3, 2013

Oil Temperature Gauge for 125 cc Scooter

Lots of Far-Eastern scooters are fitted with GY6 engines. These already elderly units are sturdy and economical, but if you want to  “push” the power a bit (so called ‘Racing’  kits, better handling of the advance, etc.), you soon find yourself faced with the problem  of the engine temperature, and it becomes essential to f it a heat sink (of ten wrongly  referred to as a ‘radiator’) on the oil circuit. Even so, in these circumstances, it’s more than reassuring for the user to have a constant clear indication of the oil temperature. Here are the specifications we set for the temperature gauge we wanted to build:

Oil Temperature Gauge Circuit Diagram :

Oil Temperature Gauge-Circuit Diagram
  • no moving parts (so not meter movement), as scooters vibrate a lot!;
  • as cheap as possible (around £12);
  • robust measuring transducer (avoid NTC thermistors and other ‘exotic’ sensors);
  • temperature range 50–140 °C. (122 – 291 °F);
  • audible and visual warning in case of dangerous temperature;
  • compact;
  • waterproof.
Let’s start by the sensor. This is a type-K thermocouple, as regularly used by multimeter manufacturers. Readily available and fairly cheap, these are robust and have excellent linearity over the measurement range we’re interested in here. The range extends from 2 mV to 5.7 mV for ten measurement points. The positive output from the thermocouple is applied to the non-inverting input of IC3.A,  wired as a non-inverting amplifier. Its gain  of 221 is determined by R1 and R2. IC3 is an LM358, chosen for its favourable characteristics when run from a single-rail supply. IC3.B is wired as a follower, just to avoid leaving it powered with its pins floating.

IC3.B output is connected to pin 5 of IC1, an LM3914. This very common IC is an LED display driver. We can choose ‘point’ or ‘bar’ mode operation, according to how pin 9 is connected. Connected as here to the + rail, the display will be in ‘bar’ mode. Pin 8, connected to ground, sets the full scale to 1.25 V. R3 sets the average LED current. Pin 4, via the potential divider R7/R8+R9, sets the offset  to 0.35 V. Using R8 and R9 in series like this avoids the need for precision resistors.

As per the LM3914 application sheet , R4-R5-R6 and C5 will make the whole display flash as soon as D10 lights (130 °C = 226 °F). Simultaneously, via R10 and T1, the (active) sounder will warn the user of overheating. Capacitor C6 avoids undesirable variations in the reference voltage in ‘flashing’ mode. IC2 is a conventional 7808 regulator and C1– C4 filter the supply rails. Do not leave these out! D1 protects the circuit against reverse polarity.

The author has designed two PCBs to be fit-ted as a ‘sandwich’ (CAD file downloadable  from [1]). In the download you’ll also find  a document with a few photos of the project. You’ll note the ultimate weapon in on-board electronics: hot-melt glue. Better than epoxy (undoable!) and quite effective against vibration.

Author : Georges Treels - Copyright : Elektor

Source : http://www.ecircuitslab.com/2012/08/oil-temperature-gauge-for-125-cc-scooter.html
Continue Reading[..]